

Cystic Fibrosis Lung Microbiome Prof Chris van der Gast

Cystic Fibrosis

Cystic fibrosis (CF) is a common autosomal recessive genetic disorder, affecting approximately 10,000 and 30,000 people in the UK and USA, respectively.

Mutation of the CF Transmembrane conductance Regulator (CFTR) genes.

CFTR genes encode for the CFTR epithelial cell membrane protein and chloride channel

Cystic Fibrosis

The disorder is multi-systemic, affecting the lungs, gastrointestinal tract, pancreas, reproductive organs, liver, and kidneys.

However, <u>lung disease</u>, as a result of chronic microbial infection and concomitant airway inflammation, is the <u>leading cause of morbidity</u> and mortality in the majority of patients.

Infection pathogenesis and control

Targeted culture-dependent assays remain the gold standard for pathogen detection.

Typically screening for a limited palette of bacterial species, including: *Pseudomonas aeruginosa*, *Staphylococcus aureus*, *Burkholderia cepacia* complex, *Haemophilus influenzae*, *Stenotrophomonas maltophilia*, *Acromobacter xylosoxidans*

Infection pathogenesis and control

The traditional 'one microbe, one disease' concepts of infection pathogenesis and infection control are not optimal in CF management.

Why?

Absent or impaired mucociliary clearance - eradication not possible

 Chronic lung infection in CF is polymicrobial - an infection microbiota of interacting microbes (interacting with each other and the host), ranging from strict aerobes through to anaerobic bacteria and fungal species.

How to look at lung microbiota in CF

Targeted amplicon high-throughput sequencing of CF microbiota

Sample handling and preparation

Stabilising respiratory sample

Biobanking (freeze/thawing samples)

Propidium monoazide – viable cells

Sample handling & preparation

Respiratory sample (BAL, sputum, ...)

Stabilise at -80°C within 12 hours – if not results in significant change in microbiota composition

Time between Collection and Storage Significantly Influences Bacterial Sequence Composition in Sputum Samples from Cystic Fibrosis Respiratory Infections

Leah Cuthbertson,^{a,b} Geraint B. Rogers,^{b,g} Alan W. Walker,^c Anna Oliver,^a Tarana Hafiz,^d Lucas R. Hoffman,^{e,f} Mary P. Carroll,^d DJulian Parkhill,^c Kenneth D. Bruce,^b Christopher J. van der Gast^a

August 2014 Volume 52 Number 8

Journal of Clinical Microbiology p. 3011–3016

Sample handling & preparation

Biobanking – freeze-thawing samples 4 times or more results in significant shifts in the microbiota composition

Journal of Cystic Fibrosis 14 (2015) 464-467

www.elsevier.com/locate/jcf

Short Communication

Implications of multiple freeze-thawing on respiratory samples for culture-independent analyses

Leah Cuthbertson ^{a,b}, Geraint B. Rogers ^c, Alan W. Walker ^{d,e}, Anna Oliver ^a, Lucas R. Hoffman ^{f,g}, Mary P. Carroll ^h, Julian Parkhill ^d, Kenneth D. Bruce ^b, Christopher J. van der Gast ^{a,*}

Sample handling & preparation

Removing bias from dead cells, damaged cells, or extracellular DNA

Propidium Monoazide (PMA)

The ISME Journal (2013) 7, 697–706 © 2013 International Society for Microbial Ecology All rights reserved 1751-7362/13

www.nature.com/ismej

ORIGINAL ARTICLE

Reducing bias in bacterial community analysis of lower respiratory infections

Geraint B Rogers¹, Leah Cuthbertson², Lucas R Hoffman^{3,4}, Peter AC Wing⁵, Christopher Pope^{3,4}, Danny AP Hooftman², Andrew K Lilley¹, Anna Oliver², Mary P Carroll⁵, Kenneth D Bruce¹ and Christopher J van der Gast²

Sample handling & preparation

Removing bias from dead cells, damaged cells, or extracellular DNA

Figure 2. Principle of PMA modification for quantitation of viable bacteria by qPCR. The cell membrane-impermeable PMA dye selectively and covalently modifies DNA from dead bacteria with compromised membranes. Subsequent PCR amplification of PMA-modified DNA templates is inhibited, allowing selective quantitation of viable bacteria.

Sample handling & preparation

Removing bias from dead cells, damaged cells, or extracellular DNA

Figure 2. Principle of PMA modification for quantitation of viable bacteria by qPCR. The cell membrane-impermeable PMA dye selectively and covalently modifies DNA from dead bacteria with compromised membranes. Subsequent PCR amplification of PMA-modified DNA templates is inhibited, allowing selective quantitation of viable bacteria.

DNA extraction

Effective DNA extraction protocols

Be aware of kit contamination

DNA extraction

Within a community / microbiota, the cells of some bacterial species are difficult to break open due to cell wall structure. e.g. high GC containing Gram +ve bacteria and especially

Mycobacterium spp.

APPLIED AND ENVIRONMENTAL MICROBIOLOGY, Dec. 2000, p. 5488–5491 0099-2240/00/\$04.00+0 Copyright © 2000, American Society for Microbiology. All Rights Reserved.

Vol. 66, No. 12

Rapid Method for Coextraction of DNA and RNA from Natural Environments for Analysis of Ribosomal DNAand rRNA-Based Microbial Community Composition

ROBERT I. GRIFFITHS, 1,2 ANDREW S. WHITELEY, 1 ANTHONY G. O'DONNELL, 2 and MARK J. BAILEY 1*

Protocol combines rigorous chemical lysis with physical disruption via bead beating

DNA extraction

Commercial high-throughput DNA extraction kits

Kits can have microbial contaminants in reagents – especially a problem in low biomass samples.

Run positive (mock communities) and negative controls

Salter et al. BMC Biology 2014, **12**:87 http://www.biomedcentral.com/1741-7007/12/87

RESEARCH ARTICLE

Open Access

Reagent and laboratory contamination can critically impact sequence-based microbiome analyses

Susannah J Salter^{1*}, Michael J Cox², Elena M Turek², Szymon T Calus³, William O Cookson², Miriam F Moffatt², Paul Turner^{4,5}, Julian Parkhill¹, Nicholas J Loman³ and Alan W Walker^{1,6*} Copyright Chris van der Gast

PCR & Sequencing

Which amplicon?

Illumina MiSeq

PCR & Sequencing

Which amplicon to target?

V2

16S rRNA gene: bacteria and / or archaea

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 bp

V5

V6

V7

V8

V9

V4

CONSERVED REGIONS: unspecific applications VARIABLE REGIONS: group or species-specific applications

V3

18S rRNA gene: microbial eukaryotes (protists, amoeba..), fungi, will pick up host (but can use blocking PCR to control for human DNA)

ITS (internal

transcribed spacer): for fungi

PCR & sequencing

Commercial high-throughput PCR reaction kits

Kits can have microbial contaminants in reagents – especially a problem in low biomass samples.

Run positive (mock communities) and negative controls

Salter et al. BMC Biology 2014, **12**:87 http://www.biomedcentral.com/1741-7007/12/87

RESEARCH ARTICLE

Open Access

Reagent and laboratory contamination can critically impact sequence-based microbiome analyses

Susannah J Salter^{1*}, Michael J Cox², Elena M Turek², Szymon T Calus³, William O Cookson², Miriam F Moffatt², Paul Turner^{4,5}, Julian Parkhill¹, Nicholas J Loman³ and Alan W Walker^{1,6*} Copyright Chris van der Gast

PCR & sequencing

When preparing library for sequencing run include positive and negative controls from DNA extraction and PCR steps. Also include blanks for sequencing run.

Salter et al. BMC Biology 2014, **12**:87 http://www.biomedcentral.com/1741-7007/12/87

RESEARCH ARTICLE

Open Access

Reagent and laboratory contamination can critically impact sequence-based microbiome analyses

Susannah J Salter^{1*}, Michael J Cox², Elena M Turek², Szymon T Calus³, William O Cookson², Miriam F Moffatt², Paul Turner^{4,5}, Julian Parkhill¹, Nicholas J Loman³ and Alan W Walker^{1,6*} Copyright Chris van der Gast

PCR & sequencing

Illumina MiSeq – reasonably easy to use (compared to previous sequencing platforms)

Possible to multiplex up to 384 samples

We typically run 192 samples with 100,000 average sequence reads per sample – more than adequate of CF microbiota

PCR & sequencing

In general, sequencing power and quality is going up and price is going down

Experienced that from using Roche 454 pyrosequencing > Ion Torrent > Illumina MiSeq > ...?

Bioinformatic pipelines

Converting raw sequence reads into something usable

Operational Taxonomic Units (OTUs) and Exact Sequence Variants (ESVs)

Bioinformatic pipelines

Sequencing platform produces millions of raw sequences – pipelines work to organise those sequences back to corresponding sample, remove poor sequences.

Lots of different pipelines (constantly evolving), e.g. QIIME or Mothur (Operational Taxonomic Units) DADA2 on the R platform (Exact Sequence Variants)

Bioinformatic pipelines

A move from Operational Taxonomic Units (OTUs) to Exact Sequence Variants (ESVs)

OPEN

The ISME Journal (2017) 11, 2639–2643

www.nature.com/ismej

PERSPECTIVE

Exact sequence variants should replace operational taxonomic units in marker-gene data analysis

Benjamin J Callahan¹, Paul J McMurdie² and Susan P Holmes³ ¹Department of Population Health and Pathobiology, NC State University, Raleigh NC, USA; ²Whole Biome Inc, San Francisco CA, USA and ³Department of Statistics, Stanford University, Stanford CA, USA

Bioinformatic pipelines

A move from Operational Taxonomic Units (OTUs) to Exact Sequence Variants (ESVs)

OBSERVATION Ecological and Evolutionary Science

Broadscale Ecological Patterns Are Robust to Use of Exact Sequence Variants versus Operational Taxonomic Units

Sydney I. Glassman, a,b Jennifer B. H. Martinya

July/August 2018 Volume 3 Issue 4 e00148-18

Multivariate analyses

Getting to point of answering the question you set off at the beginning to answer

Multivariate analyses

Getting to point of answering the question you set off at the beginning to answer

1																					
2																					
3							Sequence	reads per s	sample												
4							18705	101789	7221	5777	9148	25698	44726	13573	11042	29248	9561	29993	8255	28801	11547
5	Phylum	Class	Order	Family	OTU#	Taxa ID	MAI0016	LAR16	MAI0022	SHT0042	MAI0023	BEL0072	BEL0058	DTM024	SHT0063 S	HT0062	DTM015	BEL0027	MA10006 S	HT0074 N	VAI0019
6	pProteobacteria	cGammaproteobacteria	oPseudomonadales	fPseudomonadaceae	1	Pseudomonas aeruginosa 490	23	91641	4778	1068	8083	18021	29833	3888	10914	27041	6880	4225	421	28400	11360
7	pProteobacteria	cBetaproteobacteria	oBurkholderiales	fBurkholderiaceae	2	2 Burkholderia 1176	31	0	68	32	48	2	6	30	80	66	36	16	8	132	84
8	pFirmicutes	cBacilli	oBacillales	fStaphylococcaceae	8	Staphylococcus aureus 491	12	8	9	56	700	1	1	8	12	15	76	8746	902	29	42
9	p_Bacteroidetes	cBacteroidia	oBacteroidales	fPorphyromonadaceae	4	Porphyromonas_855	0	4	144	2624	0	0	678	0	0	14	1	1431	12	0	1
10	pBacteroidetes	cBacteroidia	oBacteroidales	fPrevotellaceae	5	Prevotella melaninogenica_825	0	733	476	215	184	515	8420	44	2	14	1705	316	79	17	1
11	pBacteroidetes	cBacteroidia	oBacteroidales	fPrevotellaceae	7	Prevotella_296	0	3	0	1	15	0	0	8768	0	28	0	75	2	0	0
12	pProteobacteria	cGammaproteobacteria	oPasteurellales	fPasteurellaceae	8	B Haemophilus influenzae_221	0	0	0	0	0	1	1	0	1	1	0	3	1	1	0
13	pProteobacteria	cGammaproteobacteria	oXanthomonadales	fXanthomonadaceae	9	Stenotrophomonas maltophilia_1052	18511	4	16	13	16	0	0	6	14	33	17	1	6726	59	49
14	pFirmicutes	cClostridia	oClostridiales	fVeillonellaceae	10	Veillonella dispar_398	0	370	210	53	31	396	2550	139	0	321	301	101	5	0	1
15	pFirmicutes	cBacilli	o_Lactobacillales	fStreptococcaceae	12	2 Streptococcus_995	13	77	1	10	0	220	561	5	0	69	9	1553	7	1	0
16	pFirmicutes	cBacilli	o_Lactobacillales	fStreptococcaceae	13	3 Streptococcus_1274	0	1148	12	58	1	10	1	37	0	0	107	566	6	0	0
17	pProteobacteria	cBetaproteobacteria	oNeisseriales	fNeisseriaceae	15	Neisseria subflava_613	0	0	1	1	1	0	3	0	1	0	0	0	4	0	0
18	pFirmicutes	cBacilli	o_Lactobacillales	fStreptococcaceae	17	7 Streptococcus_1043	0	307	0	20	1	2	226	22	0	0	0	1	4	0	0
19	p_Bacteroidetes	cBacteroidia	oBacteroidales	f_[Paraprevotellaceae]	18	Prevotella_849	0	4	66	120	0	0	0	0	0	0	137	85	1	0	0
20	pActinobacteria	cActinobacteria	oActinomycetales	fMicrococcaceae	19	Rothia mucilaginosa_562	45	355	9	66	1	4	124	2	0	0	3	2041	5	0	0
21	p_Bacteroidetes	cBacteroidia	oBacteroidales	f_Prevotellaceae	20	Prevotella_277	0	0	0	60	0	0	0	0	0	39	0	89	0	0	0
22	p_Bacteroidetes	cBacteroidia	oBacteroidales	f_Prevotellaceae	21	Prevotella_853	0	60	48	16	4	0	0	3	0	4	0	58	6	1	1
23	pBacteroidetes	cBacteroidia	o_Bacteroidales	f_Prevotellaceae	26	Prevotella nanceiensis_802	0	4	0	115	5	0	0	0	0	0	0	13	1	0	0
24	p_Bacteroidetes	cBacteroidia	oBacteroidales	f_Porphyromonadaceae	28	Porphyromonas_805	0	0	2	0	0	0	8	0	0	11	0	485	0	0	0
25	pProteobacteria	cGammaproteobacteria	o_Pasteurellales	f_Pasteurellaceae	30	Haemophilus parainfluenzae_706	0	0	0	1	0	0	0	2	0	0	12	1	0	1	0
26	pFirmicutes	cBacilli	o_Lactobacillales	f_Carnobacteriaceae	31	Granulicatella_1232	6	29	1	73	0	6	64	1	0	2	5	1	3	0	0
27	pActinobacteria	cActinobacteria	oActinomycetales	fMicrococcaceae	32	Rothia dentocariosa_596	6	3023	1	4	0	5	107	2	0	8	0	157	0	0	0
28	pBacteroidetes	cBacteroidia	o_Bacteroidales	f_Prevotellaceae	33	Prevotella pallens_1228	0	18	0	23	1	0	0	1	0	0	0	6	2	0	0
29	pFirmicutes	cClostridia	o_Clostridiales	f_Lachnospiraceae	34	Oribacterium_627	0	1	3	0	1	0	0	1	0	0	0	5	0	0	0
30	pProteobacteria	cGammaproteobacteria	o_Pasteurellales	f_Pasteurellaceae	35	Haemophilus parainfluenzae_962	0	2	0	0	0	0	0	0	0	0	12	2	0	0	0
31	pBacteroidetes	cBacteroidia	o_Bacteroidales	f_[Paraprevotellaceae]	36	i Prevotella tannerae_276	0	5	0	0	1	0	0	1	1	5	8	5	7	1	0
32	pFirmicutes	cBacilli	o_Lactobacillales	fStreptococcaceae	37	7 Streptococcus_1049	0	32	1	12	2	3	0	0	0	1	0	0	0	1	0
33	pFusobacteria	c_Fusobacteriia	o_Fusobacteriales	f_Leptotrichiaceae	38	8 Leptotrichia_188	0	5	0	0	0	0	0	1	0	0	1	0	8	1	0
34	pFusobacteria	cFusobacteriia	oFusobacteriales	f_Fusobacteriaceae	39	Fusobacterium_946	0	1	0	0	0	3857	2	0	0	0	0	4	0	0	0
35	pActinobacteria	cActinobacteria	oActinomycetales	fActinomycetaceae	41	Actinomyces_310	8	6	12	8	0	0	0	0	0	0	1	1	0	0	0
36	pFirmicutes	cBacilli	o_Lactobacillales	fStreptococcaceae	42	Streptococcus_816	0	10	6	3	0	2	0	1	0	0	0	2	0	0	0
Master All Common Rare AgeSorted Sheet1 (+ +																					Þ

Copyright Chris van der Gast

🗊 🔼

....

e

14/05/2019

Ready

(_) 🔊

Multivariate analyses

How microbiota organisation (e.g. diversity, composition, structure) is associated with clinical and host factors...

n					
Name	Mean abundance in the CD cohort	Mean abundance in the siblings cohort	% Contribution	on Cumulati	
Faecalibacterium prausnitzii	22.4	24.2	20.7	20.7	
Escherichia fergusonii	21.4	9.7	15.9	36.6	
Shigella flexneri	13.6	7.2	10.7	47.3	
Ruminococcus gnavus	13.1	5.2	8.9	56.2	
Bacteroides vulgatus	13.2	7.6	7.8	64.0	
Eubacterium rectale	9.8	6.4	6.6	70.6	
Oscillospira guilliermondii	0	8.0	5.9	76.5	
Escherichia coli	6.5	0	4.5	81.0	
Sutterella wadsworthensis	0	6.0	4.5	85.5	

How to look at lung microbiota in CF

Targeted amplicon high-throughput sequencing of CF microbiota

C.vanderGast@mmu.ac.uk

