
## Group B streptococci and other serious neonatal infections

Jim Gray Consultant Microbiologist Jim.gray1@nhs.net

#### By your side

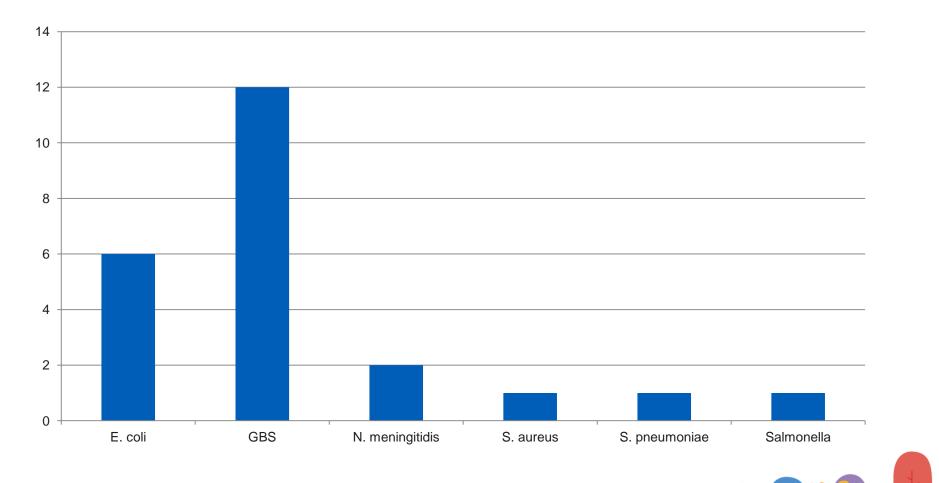
#### Types of neonatal infection





#### Microbial causes of very early-, early-& late-onset infections in the NICU




**NHS Foundation Trust** 

| Species            | <24h   | 1-7d   | >7d    |
|--------------------|--------|--------|--------|
| CNS                | <5%    | 33%    | 50-60% |
| Enterococci        | <5%    | <5%    | <5%    |
| GBS                | 40-60% | <5%    | <5%    |
| S aureus           | <5%    | 10-20% | 15-20% |
| Enterobacteriaceae | 10-30% | 30-50% | 10-15% |
| Other GNB          | 5-10%  | <10%   | 5-15%  |
| Candida            | 0%     | <5%    | 5-10%  |





# Causes of community-acquired BSI in general paediatric patients age <3 m

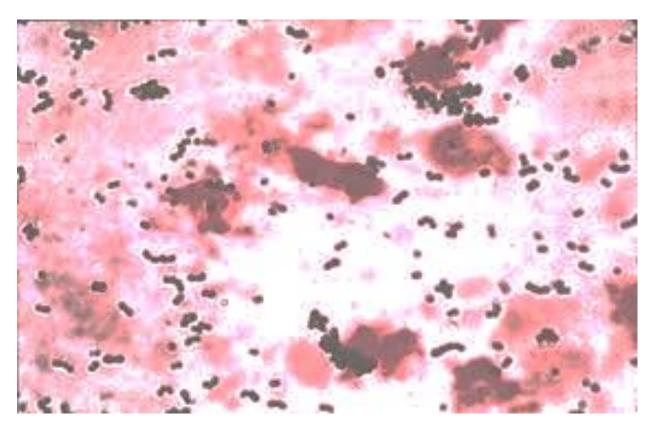


# Guidelines relating to neonatal bacterial infections



- RCOG Green-top Guideline No. 36. Group B Streptococcal Disease, Early-onset
  - Published: 13/09/2017
- NICE Clinical Guidelines
  - CG 149: Early-onset neonatal sepsis
  - CG 160: Fever in under 5s: assessment and initial management
  - CG 102: Meningitis (bacterial) and meningococcal septicaemia in under 16s: recognition, diagnosis and management
  - NG 51: Sepsis: recognition, diagnosis and early management

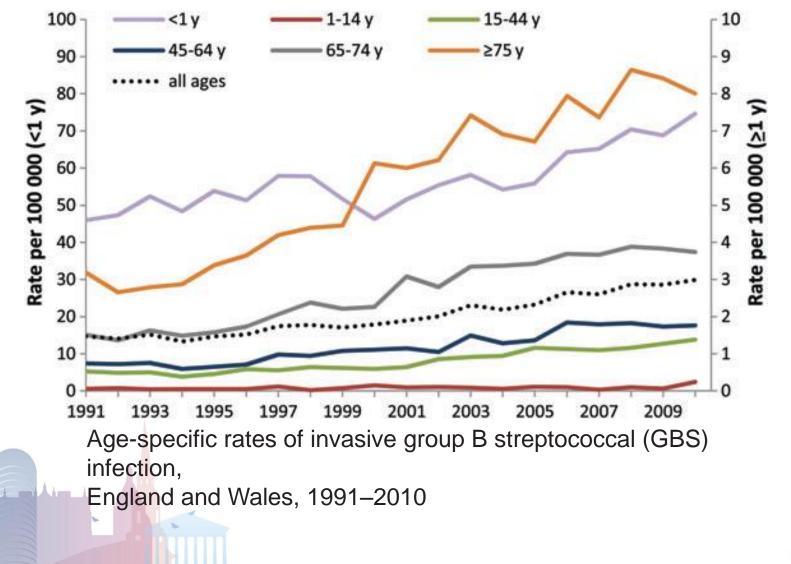





- GBS
- Multidrug-resistant Gram-negative bacteria



#### Group B streptococcus






The commonest cause of serious early-onset neonatal sepsis



#### **Group B streptococcus**



r K

# **Neonatal GBS**



- Early-onset (EOGBS)
  - Cases with onset in first 7 days
    - 30-40% cases & up to 80% deaths occur in preterm infants
    - >90% within the first 24 h
    - 50% of cases present within first 1 h of life
- Late-onset (LOGBS)
  - Cases presenting age 7 days-3 months
  - Immunisation is only feasible preventative strategy

# **Preventing EOGBS**



 Cochrane review of five RCTs (all of poor quality) found that IAP decreased rates of culture-proven EOGBS neonatal sepsis by 83%, 95%CI 61% to 93%)



# Intrapartum antibiotic prophylaxis



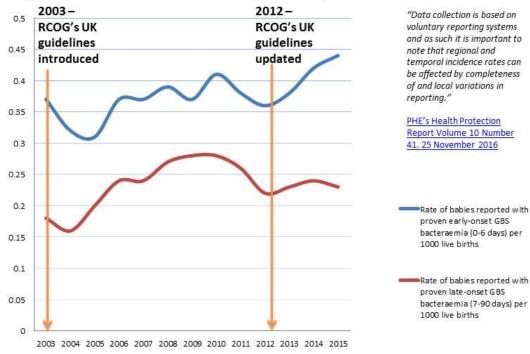
- Theoretical basis
  - Antibiotics active against GBS given as soon as possible after onset of labour
  - Therapeutic concentrations of antibiotics in cord blood within one hour of administration to mother
  - The baby receiving prophylaxis against, or in some cases early treatment for, GBS disease



### Does IAP work?



- US experience
  - Incidence of GBS decreased from 1.7/1000 births in early 1990s to 1.0/1000 births before IAP introduced
  - After IAP incidence continued to fall to a low of 0.34/1000 births, then increased slightly to 0.4/1000 births




### Does IAP work?

#### **NHS** Birmingham Women's and Children's

**NHS Foundation Trust** 

#### Proven Group B Strep Bacteraemia in Babies 2003-15 England, Wales & Northern Ireland, Voluntary Surveillance\*





Series online. Data published by Public Health England https://www.gov.uk/government/publications/pyogenic-and-non-pyogenic-streptococcal-bacteraemia-annual-data-from-voluntary-surveillance

### How should need for IAP be determined?

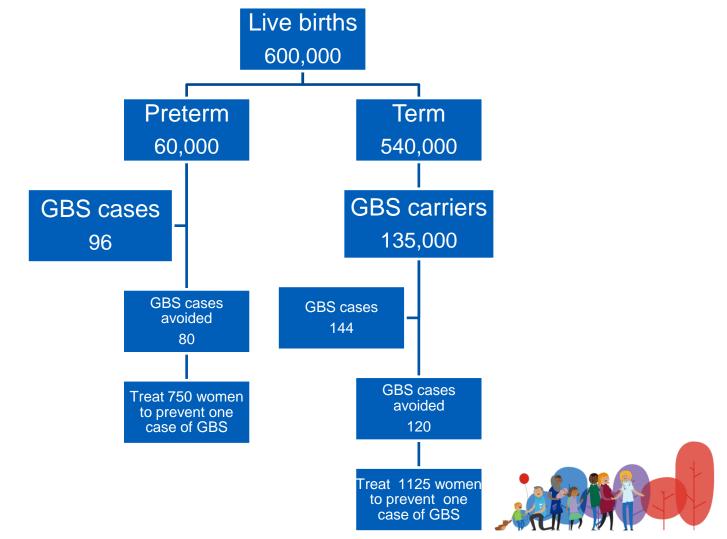


- Risk factor-based approach
- GBS detection-based approach
  - Screen women at 35-37 weeks gestation
    - Vagino-rectal swabs
    - Enrichment culture or PCR
- Stakeholders continually lobbying to change UK policy



# GBS detection strategies




**NHS Foundation Trust** 

|                                                  | Day 1                                                                          | Day 2                              | Day 3         |
|--------------------------------------------------|--------------------------------------------------------------------------------|------------------------------------|---------------|
| Enrichment culture,<br>followed by<br>subculture | Inoculate broth                                                                | Subculture broth onto solid medium | Report result |
|                                                  |                                                                                |                                    |               |
| Enrichment culture, followed by PCR              | Inoculate broth + perform PCR direct on broth after incubation + report result |                                    |               |
|                                                  |                                                                                |                                    |               |
| PCR                                              | Report result in <1<br>hour                                                    |                                    |               |
|                                                  |                                                                                |                                    |               |



# Modelling universal culture-based screening





© J Gray

# Impact of a culture-based screening programme



- Number of women screened: 540,000
- Number of women offered IAP: 195,000
- Number of cases of GBS prevented: 200
- Number of women & babies exposed to antibiotics that would be of no benefit: 194,800



# Adopting a testing in labour screening programme



- Number of women screened: 600,000
- Number of women offered IAP: 150,000
- Number of cases of GBS prevented: 200
- Number of women & babies exposed to antibiotics that would be of no benefit: 149,800
- 45,000 fewer women get antibiotics



## The problem of MDR-GNB

- **NHS** Birmingham Women's and Children's NHS Foundation Trust
- Kent A *et al*. Neonatal gram-negative infections, antibiotic susceptibility and clinical outcome: an observational study.
  - Arch Dis Child Fetal Neonatal Ed doi:10.1136/archdischild-2015-309554
- 118 episodes of GNB BSI in 116 patients in 8 NNUs
  - ESBL producers 13.8%
  - Increasing aminoglycoside MIC associated with increased mortality



Screening neonatal admissions for Gram-negative bacteria



- Reasons for screening
  - Infection prevention & control
  - Clinical: choice of antibiotics
- At BWC we have been screening for over 8 years
  - Frequency of screening: at least weekly
  - Screen for:
    - ESBL producers
    - Gentamicin-resistant Enterobacteriaceae
    - Serratia spp.
    - Pseudomonas aeruginosa
    - Acinetobacter baumannii



# What have we learned?



- 10-20% of babies will have ≥1 of these bacteria during their admission
  - Isolation policy has changed
    - No longer isolate acinetobacter or gentamicinresistant Enterobacteriaceae
    - Permit cohort isolation of other babies with some different bacteria on a hierarchical basis
- Only a small proportion of babies who acquire these bacteria become infected with them
  - Real challenge for antibiotic stewardship

#### **GNB 'of interest'** April 2016-December 2016



|                            | Colonisation | BSI                                                                             |
|----------------------------|--------------|---------------------------------------------------------------------------------|
| ESBL                       | 43           | 1                                                                               |
| Gentamicin-<br>resistant   | 37           | 3                                                                               |
| Serratia                   | 78           | 0                                                                               |
| Pseudomonas<br>aeruginosa  | 49           | 1                                                                               |
| Acinetobacter<br>baumannii | 27           | 0                                                                               |
| TOTAL                      | 234          | 5 (2.1% of colonised babies;<br>33.3% of babies with Gram-<br>negative sepsis)) |
| Other GNB                  | -            | 10                                                                              |







- Having started screening, it is very difficult to stop
- Original reason for screening was IPC
- Become more clinically important in selecting empiric antibiotics for septic babies
  - Need tight stewardship
    - Indications for starting very broad-spectrum antibiotics
    - De-escalation







- Two screening programmes:
  - One local programme screening babies for GNB
    - (Relatively) expensive
    - We don't know whether we are doing any good, but we can't stop
  - A national programme (GBS)
    - We need to be careful to resistant pressure to change practice without evidence
    - If we do we will not know that we are doing more good than harm, but we may not be able to stop